
Math 206A: Combinatorics of words (Prof. Igor Pak)

April 16, 2015

1 Lecture 1: Introduction

1.1 First example

Consider an alphabet a, b, c, . . .. There are two kinds of questions, existence and counting questions.
Let A = {0, 1} and consider words in A∗ with no w2, for example with no instance of (011)2 =

011011. Note that if the word starts with 0 the next letter has to be 1, the next letter has to be 0
and then no matter what the next letter is you are done. So all such words have |w| ≤ 3.

Question 1.1. If A = {0, 1, 2}, consider the words in A∗ with no w2. Is the size of the admissible
words bounded?

For example the word 0102012101201021 is admissible. In fact there are admissible words of
arbitrary size.

Theorem 1.2 (Thue 1906). There exists infinite words w in {0, 1, 2} with no x2.

Theorem 1.3 (Thue 1906). There exists infinite words in {0, 1}∗ with no x3.

From these results we see that this subject is beyond enumeration.

1.2 Sturmian words

Consider the line y = αx, for α ∈ Q, and paths starting at the origin with unit steps going right
and up. We form words wα ∈ {a, b}∗ from each path by assigning the letter a if the step is the
right and b if the step goes up. For example the path below corresponds to the word aabbabb.

Theorem 1.4. Let γ(n) the number of subwords of wα of length n (so wα ≤ 2n). Then γ(n) = n+1
if α 6∈ Q.
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1.3 Gray codes

A Gray code is a sequence such that all k-subwords are distinct. A De Bruijin sequence is a cyclic
sequence of length k from an alphabet A such that every possible sequence of length n in A appears
as a sequence of consecutive characters exactly once. For example for k = 1 01 words, for k = 2
0011 works and for k = 3, 00011101 works.

There is a very nice formula for the number of such De Bruijin sequences.

1.4 Paths

Consider the number of paths starting at (0, 0) with steps (1, 1) and (1,−1) staying above the line
y = 0 and ending at (2n, 0). The number of such paths are counted by the n-th Catalan number
Cn = 1

n+1

(
2n
n

)
.

Catalan numbers are standard in combinatorics and count many objects. For example, they
also count rooted trees. To see the bijection, given a tree do a tour starting at the root around the
tree1. As you traverse each edge record x if you are getting away from the root and y otherwise.
For example for the tree below we get the word xxyxyyxyxyxyxyy.

If you represent each path with a word, call these words Dyck words. Given two such words w1

and w2 then w1w2 is also a Dyck word. And if w is a Dyck word then xwy is also a Dyck word.
This structure gives a recurrence, meaning that if an is the number of such words of length n then
A(x) =

∑
n≥0 ant

n is algebraic. You can prove A(x) satisfies a quadratic equation that you can

solve and obtain that an = 1
n+1

(
2n
n

)
.

We will see results relating properties of languages and properties of generating series (rational,
algebraic, D-finite).

1.5 Combinatorics, asymptotics, and probability

Consider a random path that starts at the origin and you take unit paths to left or right with
probability 1

2 . Let pn be the probability of first return to the origin after 2n steps.

One can see that pn = 2Cn−1

22n = Cn
22n−1 .

1If the root of the tree is the King and the nodes are the genealogy of who is next in the throne, the tour is the
order of ascendence to the throne.
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You can use this to compute the probability of return to the origin. An approximation of Cn is
c4n√
πn3/2 . Asymptotic combinatorics is interested in getting these approximations.

We will see some asymptotic conclusions using knowledge of the power series.

2 Lecture 2

2.1 Thue’s theorems

Let A = {a1, . . . , ak} be the alphabet and A∗ is the set of words u = ai1ai2 · · · ai` , the length of a
word is denoted by |w| = ` and Σ(A) denotes de the sets of infinite words in A.

Theorem 2.1 (Thue 1906). For A = {a, b}, there exists w in Σ(A) such that w is cube-free, i.e.
w does not contain subword xxx for some x ∈ A∗.

We will prove a stronger result which requires the following definition.

Definition 2.2. A word w is strongly cube-free if w has no subwords of the type xxc where c is
the first letter of x.

The stronger result is the following.

Theorem 2.3 (Thue 1906). For A = {a, b}, there exists w in Σ(A) such that w is strongly cube-free.

A Thue word is defined recursively as w1 = a and wk+1 = wk · wk. where switches the
characters of the word, i.e. a 7→ b and b 7→ a. This gives the sequence of words

a, ab, abba, abbabaab, abbabaabbaababba, . . .

Let w = limk→∞wk.
We show using a series of Lemmas that w is strongly cube-free.
We define a morphism h that takes a 7→ ab and b 7→ ba.

Lemma 2.4. h commutes with , i.e. h(w) = h(w).

Proof. We check that the Lemma holds for the characters, h(a) = ab = ba = h(a) and similarly
for b. Then the result follows for words since h(z1z2 · · · ) = h(z1)h(z2) · · · and h(z1z2 · · · ) =
h(z1)h(z2) · · · = h(z1)h(z2) · · · .

Lemma 2.5. For k ≥ 1 we have that wk+1 = h(wk).

Example 2.6. w2 = ab, h(w2) = (ab)(ba) = abba = w3.

Proof. We prove the Lemma by induction. For k = 1, h(w1) = h(a) = ab = w2. And for general k
we have that wk+1 = wk · wk = h(wk−1)h(wk−1) = h(wk−1)h(wk−1) = h(wk−1wk−1) = h(wk).

Let κ(w, `) = #(`-subwords in w) ≤ 2`. Note that κ(w, 1) = 2 and κ(w, 2) = 4. However note
that κ(w, 3) = 6 (a3 and b3 do not occur in w; Lemma 2.7). So there is some stability.

By induction we can show the following lemma.

Lemma 2.7. w has no a3, b3 or (ab)3.

Proposition 2.8. κ(w, `) is computable.

Also by induction we can show the following.
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Lemma 2.9. a2 and b2 can appear in wk but only starting at even positions.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. We show by contradiction that w does not equal (· · · axxa · · · ) for some
word x. Assume otherwise and take x to be minimal with such property. Observe that |x| is even,
otherwise if |x| is odd then b2 would land in an odd position which cannot happen by Lemma 2.9.
It has to contain either an a2 or a b2. Say it has a b2, so x = · · · bb · · · then the previous letter to
bb is a (b3 is not allowed by Lemma 2.7), thus x = · · · abb · · ·

But then wk−1 has h−1(x)h−1(x).

Theorem 2.10. Let w′k be the word obtained from wk by aa 7→ 1 ab 7→ 2 ba 7→ 3 and bb 7→ 4 where
we run over 2-letter subwords.

For example for w = abbabaabbaab · · · we get 2432212 · · · then w′k is square-free.

Theorem 2.11. Let w′′k be the word obtained from wk by aa 7→ 1 ab 7→ 2 ba 7→ 3 and bb 7→ 1 where
we run over 2-letter subwords.

For example for w = abbabaabbaab · · · we get 2132212 · · · then w′′k is square-free.

2.2 Context

This is related to Burnside’s problem that took 50 years to get a negative solution and 30 more
years for a positive solution. Zelmanov received the Fields medal for his work on this problem. Let
B(n, k) be the free group G on n generators such that gk = 1 for all g in G. B(n, 2) = Zn2 . It is
easy to see that B(n, 2) is abelian, since (gh)2 = 1 and g2 = h2 = 1 then it follows that hg = gh.
One can show that B(n, 3) is finite, it is more complicated to show that B(n, 4) is finite.

Question 2.12. It is open to show that B(n, 5) is finite.

We do not even know if B(2, 5) is finite. Another conjecture is the following.

Conjecture 2.13. If < σ,w >= An, there exists a word of length < 1010 such that word (σ,w)
has order not divisible by 5.

We are concerned with the version of this problem for semigroups.

3 Lecture 3:

We finish the proof of Thue’s theorems.
We have proved that the word w is strongly-cube-free.

Theorem 3.1. There exists a square-free word in {1, 2, 3}∗

Recall that wk+1 = wkwk = h(wk) where h(a) = ab and h(b) = ba; a = b and b = a. Define a
map φ : [aa] 7→ 1[ab] 7→ 2, [ba] 7→ 3, [bb] 7→ 4. And let w′ = φ(w). So for example:

w = abbabaabbaababba · · ·
w′ = 243231243123243 · · ·

Lemma 3.2. The word w′ is square-free in the alphabet {1, 2, 3, 4}.

4



Proof. Suppose w′ contains a square then in w it comes from ww where w is an ab-word starting
with a letter, say z = a, the letter after w is also z (since the pair of the last letter of w and z must
appear again at the end of the second occurrence of w). Thus w contradicts Theorem 2.3.

Let ψ : ab 7→ 2, ba 7→ 3, aa 7→ 1, bb 7→ 1. Let w′′ = ψ(w).

w = abbabaabbaababba · · ·
w′′ = 2132312131213123213 · · ·

Lemma 3.3. ψ(w) = w′′ is square-free in the alphabet {1, 2, 3}.
Proof. The word w′′ has the same information as w′, since baab goes to 312 and baab goes to 243.
So if there is a square in w′′, there is a square in w′.

Remark 3.4. This construction has been rediscovered a number of times. Thue-Morse goes back
to 1906 and 1930. But Prouhet had found a word in 1851 and Euwe in 1929. Thue was interested in
Burnside’s conjecture. B(n, k) = Fn/(x

k = 1). Novikov and Novikov-Adjan (1950s, 1960s) showed
there are > 667. And Ivanov showed that if k is even then B(n, k) > 248.

Theorem 3.5. There exists infinite finitely generated groups with all elements of finite order.

Proof. The first proof uses Golod-Shafarevich theorem. The second group is by Aleshin and Grig-
orchuk.

Remark 3.6. Max Euwe was a chess champion from Denmark. Currently if during a game of chess
the same board is arrived at three times it is declared a draw. This is called three-fold repetition.
In the history of this rule there was a predecessor used in a London tournament in 1883 said that if
in the sequence of moves there are repeated moves repeated three times then there is a draw. Then
it changed to six times for the first World Championship. Euwe discovered the Thue-Morse word,
by showing that there are two or more possibilities, say just a and b then you can obtain infinite
words that are cube-free.

3.1 Tarry-Escott Problem

This problem was stated in 1910 and 1912 but was solved by Prouhet in 1851. Wright (from
Hardy-Wright discovered Prouhet’s result).

Let X,Y ⊂ Z such that X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} is there a solution to
the system 

x1 + · · ·+ xn = y1 + · · ·+ ym
x2

1 + · · ·+ x2
n = y2

1 + · · ·+ y2
m

...
...

xk1 + · · ·+ xkm = yk1 + · · ·+ ykm


Example 3.7. For k = 5 take X = {0, 5, 6, 16, 17, 22} and Y = {1, 2, 10, 12, 20, 21}.
Example 3.8 (Euler-Goldbach 1751). For k = 2, X = {a, b, c, a+ b+ c}, Y = {a+ b, a+ c, b+ c}
Theorem 3.9 (Prouhet). Let wk = abbabaab · · · which has length 2k, Xk = {1, 4, 6, 7, . . .} (po-
sitions of a in wk) and Yk = {2, 3, 5, 8, . . .} (positions of b in wk). Then (Xk, Yk) satisfies the
Tarry-Scott problem up to the k − 1th power.

Example 3.10. w2 = abba, X2 = {1, 4} and Y2 = {2, 3}. For w3 = abbabaab, X3 = {1, 4, 6, 7}
and Y3 = {2, 3, 5, 8}.
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4 Lecture 4

Let X,Y ⊂ N such that X ∩ Y = ∅. We want (X,Y ) to satisfy the system∑
x∈X

x` =
∑
y∈Y

y`, ∀` = 0, . . . , k (4.1)

Theorem 4.2 (Prouhet 1851). Let w be a Thue word, define Xk, Yk ⊆ [2k] where Xk are the
positions of a in wk and Yk are the positions of b in wk then (Xk, Yk) is TEk−1.

Lemma 4.3. If (X,Y ) is in TEk then (X +N, y +N) is TEk

Proof. For all ` = 0, . . . , k − 1 we have

∑
x∈X

(x+N)` −
∑
y∈Y

(y +N)` =

∑
x∈X

x` +
∑
y∈Y

y`

+ `N

∑
x∈X

x`−1 −
∑
y∈Y

y`−1

+ · · ·

= 0 + 0 + · · · = 0.

Lemma 4.4. If (X,Y ) is TEk then (2X, 2Y ) is TEk.

Proof.

∑
x∈X

(2x)` −
∑
y∈Y

(2y)` = 2`

 ∑
x inX

x` −
∑
y∈Y

y`

 = 2` · 0 = 0.

Lemma 4.5. If (X,Y ) is TEk then (X ∪ (Y + 1), (X + 1) ∪ Y ) is TEk+1.

Proof.

∑
x∈X

x` −
∑
x∈X

(x+ 1)` −
∑
y∈Y

y` +
∑
x∈X

(x+ 1)` = −`

∑
x∈X

x`−1 −
∑
y∈Y

y`−1

+

(
`

2

)∑
x∈X

x`−2 −
∑
y∈Y

y`−2

− · · ·
= 0− 0 + 0− 0 · · · = 0.

Proof of Terry-Scott problem. Assume that (Xk, Yk), a partition of [1, 2, . . . , 2k], is TEk−1 then
(Xk − 1, Yk − 1) is also TEk−1 by Lemma 4.3, and so is (2(Xk − 1), 2(Yk − 1)) by Lemma 4.4. The
essence of Lemma 4.5 is what h does to w (h(a) = ab, h(b) = ba).

But then by Lemma 4.5 (Xk+1− 1, Yk+1− 1) is TEk and so by Lemma 4.3 (Xk+1, Yk+1) is TEk
as desired.
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4.1 Complexity of Thue word w

Recall that κ(n) is the number of subwords of length n in w.

Theorem 4.6. κ(n) = O(n), moreover κ(n) ≤ 4n.

Example 4.7. This sequence is in [?][A005842].

2, 4, 16, 10, 17, 16, 20, 22, 24, 28, 32, 36, . . .

κ(20) = 60,κ(30) = 90,κ(40) = 124,κ(50) = 162.

Lemma 4.8. κ(2m+ 1) = 2κ(m) and κ(2m) = κ(m+ 1) + κ(m).

Theorem 4.9. κ(n) = 3(n− 1) + dist{n− 1, nearest 2k}.

Example 4.10. For n = 49 we have κ(49) = 3 · 48 + 16 = 160 since 48 is in the middle of the
powers 32 and 64..

This can be proved by induction.

Sublemma 4.11. Let u be a word of length ≥ 4. If u = (ab . . . u · · ·u · · · ) then us have positions
of same parity.

Next we show that κ(2m + 1) = 2 · κ(m + 1). If we count the number of subwords u of odd
length that start in odd position equals κ(m+ 1).

wk = (abba . . . U . . .) then wk−1 = (ab . . . h−1(u)c . . .) and h−1(u) has length m+ 1.
Similarly, if we count subwords u of odd length that start in even position equals κ(m+ 1).
A similar argument proves κ(2m) = κ(m+ 1) + κ(m).

5 Lecture 5: Tower of Hanoi

n

1 2 3

Consider the Tower of Hanoi game with n disks.

Theorem 5.1. The minimal number of steps in the Tower of Hanoi game with n discs is 2n − 1.

Proof. Let γ(n) be the number of steps as in the statement. We prove it by induction. We check
that γ(1) = 1. Now γ(n) ≤ γ(n − 1) + 1 + γ(n − 1) by construction. This shows inductively that
f(n) ≤ 2n − 1.

For the lower bound we also show γ(1) = 1. Note that for the biggest disc to move from peg 1
to peg 2 we also need γ(n) ≥ γ(n− 1) + 1 + γ(n− 1). Therefore γ(n) ≥ 2n − 1.

Thus γ(n) = 2n − 1.
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5.1 Tower of Hanoi word

Let a : 1→ 2, b : 2→ 3, c : 3→ 1; and a : 2→ 1, b : 3→ 2, c : 1→ 3. These six letters completely
encode the operations of the tower of Hanoi.

Let Hn be the word of tower of Hanoi with n discs from peg 1 to peg 2 if n is odd and from
peg 1 to peg 3 if n is even.

Example 5.2. H1 = a, H2 = acb, H3 = acbacba, H4 = acbacbacbacbacb.

1 2 3 1 2 3 1 2 3 1 2 3

Remark 5.3. There exists H = limn→∞Hn, since Hn−1 is a prefix of Hn.

Question 5.4. What is H?

Let Ψ : {a, a} 7→ a, {b, b} 7→ b, {c, c} 7→ c, and ϕ : {a, b, c} 7→ 0, {a, b, c} 7→ 1. Let Gn = Ψ(Hn),
Bn = ϕ(Hn) and G = limn→∞Gn and B = limn→∞Bn. Note that determining H is equivalent to
(G,B).

Example 5.5. G = acbacbacbcbacb · · · = (acb)∞. B = 010001010100010 · · · . Recall the Thue word
abbabaa bbababba · · · . The squares in the Thue word correspond to the ones in G.

Theorem 5.6. G = (acb)∞ and B is a sequence of 1s at the squares of the Thue word W .

Proof. Let σ : a 7→ b 7→ c 7→ a and a 7→ b 7→ c 7→ a.

Lemma 5.7. Hn =

{
Hn−1cσ(Hn−1) if n even,

Hn−1aσ
2(Hn−1) if n odd.

.

Next we look at the case of the game of Tower of Hanoi with more then three pegs. Let n be
the number of discs and k be the number of pegs. Let h = k − 2 and s be the unique integer such
that

(
h+s−1
h

)
< n ≤

(
h+s
h

)
, then

Conjecture 5.8. The number Hk(n) of steps in the Hanoi tower game with m pegs and n discs
equals ak(n) where

ak(n) = 2s
(
n−

(
h+ s− 1

h

))
+

s−1∑
t=0

2t
(
h+ t− 1

h

)
,

where h and s as defined above.

Theorem 5.9 (Hinz, 1988). The number Hk(n) of moves in the game of towers of Hanoi with n
discs and m pegs is Hk(n) ≤ ak(n).

Theorem 5.10 (M. Szegedy 1998). The Hk(n) = 2Θ(n1/(k−2)), and bk(n) ≥ ak(n)Ck for some
constant Ck.

A growth of the form e
√
n is called an intermediate growth.
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6 Lecture 6:

Lucas came up with Hanoi towers in 1883.
Let THk be the game of tower of Hanoi with k pegs.

Theorem 6.1. Let Hk(n) be the minimum number of moves for THk. Then THk(n) ≤ ak(n) =

2s
(
n−

(
h+s−1
h

))
+
∑s−1

t=0 2t
(
h+t−1
h

)
.

Stewart posed this problem and gave the bound in the American Mathematical Monthly in
1941, Frame (the same Frame as in the hook-length formula) also found the bound with essentially
the same proof.

Theorem 6.2 (M. Szegedy 1998). Hk(n) = 2Θk(n1/(k−2)).

Theorem 6.3 (Chen, Shen, 2004). Hk(n) = 2(1+o(1))(k−2)!−n)1/(k−2)
. Moreover they show Hk(n) =

no(1) · 2[(k−2)!n]1/(k−2)
.

6.1 Frame-Stewart Algorithm (k=4)

Let f(n) be the number of moves with n discs. Take 1 ≤ r ≤ n and move r discs to peg 3. This
leaves n− r discs to move in three pegs, which reduces to H2(n− r). Then we move the r pegs to
where the n− r pegs are now. Thus

f(n) = f(r) + (2n−r + 1) + f(r).

n

1 2 3 4

r

For which r do we get the best recurrence? We claim that this happens when r is large, around
2
√
n. So n− r = Θ(

√
n). Thus f(n) ≤ nc · 2

√
2n. You want to minimize the time you just use three

pegs.
Let n =

(
`
2

)
. We show by induction on ` that f(n) ≤ (` + c) · 2` for some c ≥ 0. By induction

hypothesis f(`(`− 1)/2) ≤ (`+ c)2` then

f(`(`+ 1)/2) ≤ 2 · f(`(`− 1)/2) + (2` − 1) ≤ 2(`+ c) · 2` + 2` ≤ (`+ 1 + c)2`+1.

We also need to check the base case and we are done.
For the lower bound instead of counting f(n), we count g(n) defined as the minimal number of

steps to move all discs. For example in the case of three pegs, when you get to move the largest
disc you are done. The argument shows that f(n) and g(n) have the same asymptotics up to a
polynomial factor.

Lemma 6.4. g(n) ≥ 2 ·min{g(n− 8m), 2m−2 − 1} for every m.

Sketch. From the definition of g(n) it is difficult to nail the configuration for an induction. So
we consider g′(n) to be the number of steps to move all discs from any position. Consider the
largest 8m discs, where m ≤ n/8. There is at least one peg with 2m discs. Call the first L discs
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large and the m ones in the bottom extra large. The rest of the discs are called small. It takes
2m−2 − 1 moves before we touch the largest of the large discs on three pegs. And there n − 8m
small discs which takes g(n − 8m) steps to move them. We get g(n − 8m) + 2m−2 + 1 steps and
this ≥ 2 min{g(n− 8m), 2m−2 − 1}. From here we optimize to produce the lower bound.

D. Knuth has a quote when he was studying if this algorithm was optimal. “This is a difficult
problem and no one can do it”.

The Sierpinski gasket with three pegs the behavior is exponential with four pegs there is a
limiting behavior but it is much more complicated.

7 Lecture 7

7.1 Sturmian words

Let A = {a, b} and w ∈ Σ(A) be an infinite word. κ(w, n) is the number of distinct subwords of
length n in w. If κ(w, 1) = 1 then w = a∞ or b∞.

Assume κ(w, 1) = 2 from now on.

Theorem 7.1. Either κ(w, n) ≥ n+ 1 or κ(w, n) ≤ C for some constant C.

Moreover w is eventually periodic if and only if κ(w, n) ≤ C for some constant C, this is
equivalent to w = u · v∞ for some u, v ∈ A∗.

Lemma 7.2. If κ(w, n) = κ(w, n+ 1) then w is eventually periodic.

Proof. Suppose w is not eventually periodic, then κ(w, 1) = 2,κ(w, 3) ≥ 2,κ(w, 3) ≥ 4, . . .
κ(w, n) ≥ n+ 1 by induction.

Suppose κ(w, n) = κ(w, n + 1), then for every u ∈ w, |u| = n, u is a subword of w. Either ua
or ub ∈ w but not both.

There is at most 2n words of length n, so somve v is repeated, from this point on w is periodic.

Definition 7.3. Let A = {0, 1}. The word v in Σ(A) is Sturmian, if for all n, we have κ(w, n) =
n+ 1.

Definition 7.4. The Fibonacci word is defined as the limit of the following words: F0 = 0, F1 = 01
and Fn+1 = FnFn−1. Then w = limn→∞ Fn ∈ Σ(A).

F0 = 0, F1 = 01, F2 = 010, F3 = 01001, F4 = 01001010, F5 = 0100101001001.

Proposition 7.5. κ(w, 1) = 2, κ(w, 2) = 3 (all Fn start with 0), κ(w, 3) = 4.

Proof. κ(w, 2) = 3 since there is no 11. κ(w, 3) = 4, the subwords are 001, 010, 100, 101. This
follows since 111, 110, 011 are not present since we exclude 11. To see that 000 is also excluded,
observe that everything ends either 01 or 10.

The main result on the Fibonacci word w is that it is Sturmian.

Theorem 7.6. The Fibonacci word w is Sturmian.

To prove this we need the following Lemma
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Lemma 7.7. Fn = ϕn(0) where ϕ(0) = 01 and ϕ(1) = 0.

Remark 7.8. Recall that the Thue morphism was ϕ(0) = 01 and ϕ(1) = 10.

The Lemma is is equivalent to Fn+1 = ϕ(Fn). Then w = ϕ(w).

Proof. We use strong induction on n. F1 = ϕ(F0) = ϕ(0) = 01. Now

ϕ(Fn) = ϕ(Fn−1Fn−2) = ϕ(Fn−1)ϕ(Fn−2) = FnFn−1 = Fn+1.

as desired.

Lemma 7.9. For all words u either 0u0 or 1u1 is not in w.

Proof. For u = ∅ the result follows since 11 is not in w.
For u = 1 or u = 0, the result follows since 111 and 000 are not in w.
By contradiction suppose 0u0, 1u1 are in w then u = 0v0 for some v since we cannot have 1v0

or 1v1, then 00v00, 10v01 are in w. But w = ϕ(w) so there exists z in w such that ϕ(z) = 0v.
Therefore, 00v00 = ϕ(1z1) and 010v01 = ϕ(0z0).

Corollary 7.10. κ(w, n+ 1) ≤ κ(w, n) + 1.

Proof. There exists u, v in w such that |u| = |v| = n and both u0, u1, v0, v1 are in w. Then
u = . . . 0x . . . which implies 0x0 ∈ w and v = . . . 1x . . . which implies 1x1 ∈ w. This contradicts
Lemma 7.9.

Lemma 7.11. w is not eventually periodic.

Proof. Let F̃n denote Fn reversed. We claim that F̃n0 and F̃n1 are in w. There exist words of
arbitrary length that can be extended.

8 Lecture 8

8.1 Fibonacci word

A word w ∈ Σ(0, 1) is Sturmian if κ(w, n) = n+ 1 for all n ≥ 1.

Theorem 8.1. F0 = 0, F1 = 01, Fn+1 = FnFn−1, w = limn→∞ Fn is called the w-Fibonacci word.
Then w is Sturmian.

Lemma 8.2. For any w, if κ(w, n) = κ(w, n+ 1) for some n then w is eventually periodic.

Lemma 8.3. For the w-Fibonacci word κ(w, n+ 1) ≤ κ(w, n) + 1.

Both Lemmas imply that the Fibonacci word w is eventually periodic or Sturmian.

Lemma 8.4. w is not eventually periodic.

Let h(w) be the number of ones in w, and let π(v) = h(v)
|v| . If w is the Fibonacci word w then

say π(w) = limn→∞ π(wn), where wn is the n-prefix of w.
Note that if w is eventually periodic then π(w) ∈ Q.

Lemma 8.5. For the Fibonacci word w, π(w) 6∈ Q.

11



|Fn| = fn+1 where (f0, f1, . . .) are the Fibonacci numbers. And h(Fn) = fn−1, so π(Fn) =
fn−1

fn+1
→ 1

φ 6∈ Q where φ =
√

5+1
2 .

0, 01, 010, 01001, 01001010, 0100101001001.

Lemma 8.6. We have that Fn+2 = (Fn−3 · · ·F1F0)F̃nF̃ntn where tn =

{
01 if n odd,

10 if n even
, and where

w̃ is the reverse of w.

Proof. Proof by induction (exercise).

Corollary 8.7. κ(w, n) < κ(w, n+ 1)

Since F̃n = ....F̃n−1 then F̃n0 and F̃n1 are subwords of w. And for every suffix u of F̃n satisfies
u0 and u1 are subwords of w. So every subword extends from length n to n + 1 and there words
that extend into more than one word.

8.2 w-recurrent words

Definition 8.8. A word w is recurrent if every subword of w occurs infinitely many times.

Remark 8.9. The Fibonacci word is recurrent, since for a subword u of w there exists an index n
such that u is a subword of Fn, then u occurs at least i times inf Fn+i.

Proposition 8.10. If w is Sturmian then w is recurrent.

Proof. Suppose there exists a subword u, with n = |u| such that u occurs finitely many times. Let
w′ be the suffix of w where there re no more instances of u. But κ(w′, n) ≤ κ(w, n)−1 ≤ n+1 = n.
Thus w′ is eventually periodic and so w is eventually periodic.

Definition 8.11. X ⊆ A∗, X =
⋃∞
n=0X

n is factorial if for all x ∈ X, Y is a subword of x then
y ∈ X.

Definition 8.12. X,Y ∈ An, meaning |X| = |Y | = n, then δ(X,Y ) = |h(X)−h(Y )|. X is balanced
if for all U, V ∈ X such that |U | = |V | then δ(U, V ) ≤ 1.

The goal is to show the following result.

Theorem 8.13. w is Sturmian if and only if w is balanced and not eventually periodic.

Proposition 8.14. If X is factorial and balanced then |Xn| ≤ n+ 1.

Proof. We show this by contradiction. For n ≥ 3 take the smallest counterexample. Either
|Xn−1| ≤ n or |Xn| ≥ n+ 2. By minimality of u there exist u, v ∈ Xn−1, then u0, u1, v0, v1 ∈ Xn.
We look at the longest suffix x that u0 and v1 have in common. Then 0x0, 1x1 ∈ Xk and this is a
contradiction since it implies that X is not balanced.

12



9 Lecture 9

Theorem 9.1. The following are equivalent, for w ∈ Σ({0, 1}):

(1) w is Sturmian,

(2) w is balanced and aperiodic,

(3) w is mechanical with irrational slope.

Corollary 9.2. Set of Sturmian words is uncountable.

Definition 9.3. A word w is mechanical with slope α if it comes from a path with steps (1, 0) and
(1, 1) in the positive quadrant below the line y = αx.

00101001

slope α

For example the Fibonacci word w has slope α = 1/φ2.

Remark 9.4. If α 6∈ Q then w not eventually periodic.

To prove (3)→ (2) from Theorem 9.1, w is balanced.

Remark 9.5. Recall the geometry of continued fractions. If

α =
1

a1 + 1
a2+ 1

a3+ 1
a4+···

If pn is the truncation of the continued fraction up to the nth term then limn→∞
pn
an

. Let zn =
(an, pn) and plot these points. The convex hull of these points is below the line y = αx.

Claim 9.6. A prefix x in w of length qn has h(x) = pn.

Remark 9.7. Sturmian words give a combinatorial model to study irrational numbers.

The steps of the proof of Theorem 9.1 are (1)→ (2), (2)→ (3), (3)→ (2), (2)→ (1).

9.1 Proof (2)→ (1) of Theorem 9.1

We know that w is aperiodic then κ(u, h) ≥ n + 1. If w is balanced then κ(u, n) ≤ n + 1. This
implies that w is Sturmian.

13



9.2 Proof (1)→ (2) of Theorem 9.1

Lemma 9.8. Given a factorial word X, X is unbalanced if and only if there exists w = w̃ palin-
drome such that 0w0, 1w1 ∈ X.

Given the lemma, if we have a Sturmian word w, we show it is balanced by contradiction. If
it is unbalanced then it has a palindrome 0w0 and 1w1 for w palindromic. This then implies that
κ(w, n) 6= n+ 1 for some n.

9.3 Proof (2)→ (3) of Theorem 9.1

Let π(x) = h(x)
|x| is the slope, then lim|x|→∞ π(x) exists, call this π(w). This is α.

Lemma 9.9. Given a factorial word X, X is balanced if and only if for all u, v ∈ X then |π(u)−
π(v)| < 1

|u| + 1
|v| .

Note that we do not impose u and v have the same length.

10 Lecture 10

We finish Sturmian words. We continue the proof of Theorem 9.1. We do (1) → (2), (3) →
(2), (2)→ (1).

The use of mechanical words are words with steps (1, 0) and steps (1, 1) below the line y = αx+β
where 0 ≤ β < 1 and α < 1.

Proposition 10.1. X is factorial, then X is balanced if and only if for all u, v ∈ X, |x(u)−x(v)| <
1
|u| + 1

|v| .

Proof. (⇐) Take |u| = |v| = n then |π(u)−π(v)| < 2
n . Since the LHS of the inequality is an integer

then |π(u)− π(v)| ≤ 1 so w is balanced.
(⇒) If x is balanced then |u| > |v|, u = zt with |z| = |v|. By induction |π(t)− π(u)| < 1

|t| +
1
|v| ,

so |h(z)− h(v)| ≤ 1 since x is factorial and balanced so |π(z)− π(v)| < 1
|v| .

π(u)− π(v) =
|z|
|u|π(z) +

|t|
|u|π(t)− π(v),

=
|z|
|u|(π(z)− π(v)) +

|t|
|u|(π(t)− π(v))

Thus

|π(u)− π(v)| < 1

|u| +
|t|
|u|

(
1

|v| +
1

|t|

)
=

1

|u| +
1

|v| .

This proposition implies that for the nth prefix wn of w, the sequence (π(wn)) is a Cauchy
sequence. Does it converges.

Corollary 10.2. There exists a limit limπ(wn) = α where wn is the nth prefix of w for all infinite
balanced words.

14



We are now able to prove (3)→ (2) in Theorem 9.1.

αn−2 < bαnc < h(wn) ≤ bαnc < αn

0 ≤ |h(u)− h(v)| < 2 since α is irrational.

Remark 10.3. Generalizing Sturmian words to higher dimensions is of interest.

11 Lecture 11

11.1 Quasideterminants

What is the noncommutative notion of determinants like

[
a b
c d

]
= ad− bc, that preserves det(A ·

B) = det(A) det(B) and Cramer’s rule (A−1)ij = (−1)i+j det(Aij)
det(A) ?

Our entries will be in a division ring R.
Let A = (aij)n×n where aij ∈ R, denote by |A|ij = (A−1)ij . This is called the (i, j) quasideter-

minant of A.

Proposition 11.1. Suppose R is a commutative ring, A = (aij)n,n, aij ∈ R. Then A is invertible
over F(R) the ring of formal variables.

Proof. For n = 1, (a11)−1 = a−1
11 .

For n = 2, A =

[
An,n c
B ann

]
=

[
X11 X12

X21 X22

]
, define A−1 =

[
Y11 Y12

Y21 Y22

]
, where

Y11 = (X11 −X12X
−1
22 X21)−1,

Y12 = −X−1
11 X12(X22 −X21X

−1
11 X12)−1

Y21 = −X−1
22 X21(X11 −X12X

−1
22 X21)−1

Y22 = (X22 −X21X
−1
11 X12)−1,

where X−1
11 is well defined by induction and X−1

22 = a−1
nn .[

X11 X12

X21 X22

] [
Y11 Y12

Y21 Y22

]
For example the (1, 1) entry is

X11Y11 +X12Y21 = X11 · (X11 −X12X
−1
22 X21)−1 +X12X

−1
22 X21(X11 −X12X

−1
22 X21)−1

= (X11 −X12X
−1
22 X21)(X11 −X12X

−1
22 X21)−1 = 1.

X11

X12

X−1
22

X21

Y11 = (X11 −X12X
−1
22 X21)

−1

Once we figure out what happens for n = 2, we know what happens in general. In the case
n = 2 above we can treat X11 as an (n− 1)× (n− 1) matrix.

15



Remark 11.2. We think of each term as an infinite product.

(x11 − x12x
−1
22 x21)−1 = [x11(1− x−1

11 x12x
−1
22 x21)]−1 =

1

1− x−1
11 x12x

−1
22 x21

x−1
11 .

Definition 11.3 (Quasideterminant). Let |A|ij = (yji)
−1 where (A−1)n,n = (yij)n,n. This is the

(i, j) quasideterminant of A.

Example 11.4 (n = 2). A =

[
a11 a12

a21 a22

]
, then |A|11 = a11 − a12a

−1
22 a21, |A|12 = a12 − a11a

−1
21 a22,

|A|22 = a22 − a21a
−1
11 a12.

Example 11.5 (n = 3).

|A|11 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


= a11 − a12(a22 − a23a

−1
33 a32)−1a21 − a12(a32 − a33a

−1
23 a22)−1a31−

− a13(a23 − a22a
−1
32 a33)−1a21 − a13(a33 − a32a

−1
22 a23)−1a31.

1

2

3

1′

2′

3′

We claim that the terms of the quasideterminant are words.

|A|11 =
∑

w:1→1′, no intermediate 1,1′

∏
aij∈w

aij .

Theorem 11.6. |A|k,` = ±∑w:k→`′, no intermediate k,`′
∏
aij∈w a

±1
i,j .

11.2 Cartier-Foata determinants

aijak` = ak`aij for i 6= k then define the Cartier-Foata determinant as

detCF (A) =
∑
σ∈Sn

(−1)sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Theorem 11.7. (−1)i+j |A|ij = detCF (Aij)
−1

detCF (A).
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12 Lecture 12

Recall the connection between quasideterminants and words.

Theorem 12.1.
|A|11 =

∑
w:1→1′, no intermediate 1,1′

(−1)
`(w)−1

2 wt(w).

For example the weight of the word ϕ is a12a
−1
32 a33a

−1
13 anna

−1
3n a31. The words have no instance

of xx−1.

1

2

3

n

1′

2′

3′

n′

Lemma 12.2 (Homological relations). For rows −|A|ij |Ai`|sj = |A|i`|Aij |−1
s` for s 6= i and ` 6= j.

For columns −|Akj |−1
it |A|ij = |Aij |−1

kt |A|kj for t 6= j and i 6= j.

Proof.

Lemma 12.3. a−1
i`

[
k` akj
ai` aij

]
= −a−1

k`

[
ak` akj
ai` aij

]
.

Proof.
a−1
i` (aij − ai`a−1

k` akj) = a−1
i` aij − a−1

k` akj = −a−1
k` (ak` − ak`a−1

i` aij)

If something hods for 2× 2 matrices, by the hereditary property it holds for all matrices.

13 Lecture 12

Definition 13.1. Let A = (aij) is Cartier Foata if for all i 6= k we have that aijak` = ak`aij .

Theorem 13.2. For every matrix A that is Cartier-Foata and invertible then |A|ij = (detCF (Aij))−1·
detCF (A) where detCF (A) =

∑
σ∈Sn

(−1)sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n.

This is equivalent to showing detCF (A) = |A|11|A11|22|A12,12|33 · · · ann.

Lemma 13.3. Let B = (bij) be Cartier Foata.

(a) Let B′ be the matrix obtained by switching columns i and j. Then detCF (B) = −detCF (B′).

(b) If a matrix B has two identical columns then by the above observation then detCF (B) = 0.

(c) detCF (B) =
∑n

i=1(−1)n+i(detCF B
in) · bin.

Proof. (a) follows since the entries in the same row commute. (b) follows from (a), and (c) also
follows.
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B B′

Proof.

(det
CF

(B11),−det
CF

(B21), . . . , (−1)n−1 det
CF

(Bn1) ·B = (· · · ,
n∑
i=1

(−1)i(det
CF

Bi1), · · · ) = det
CF

(B)(1, 0, . . . , 0)B−1

= (−det
CF

(B11),−det
CF

(B21), . . .)

Then (B−1)11 = (det(B))−1 detB11.

13.1 q-Cartier-Foata matrices

aj`aik = aikaj` for all i < j and k < ` and aj`aik = q2aikaj` for i < j and k > `, and ajkaik = qaikajk
for all i < j.

Theorem 13.4. detq−CF (A) = |A|11|A11|22 · · · ann and these product terms commute where

det
q−CF

(B) =
∑
σ∈Sn

(−q)inv(σ)bσ(1)1bσ(2)2 · · · .

13.2 MacMahon’s Master Theorem

Theorem 13.5 (MacMahon’s Master Theorem). Let A = (aij)n×n, aij ∈ C and define G(k1, . . . , kn) =

[xk1
1 · · ·xkn1 ]

∏
(ai1x1 + · · ·+ ainxn)ki, for integers (k1, k2, . . . , kn0 ∈ Nn.

Let T = diag(t1, t2, . . . , tn) then∑
(k1,k2,...,kn)

G(k1, k2, . . . , kn)tk1
1 · · · tknn =

1

det(I − TA)

An application to this result is Dixon’s identity.

Corollary 13.6.
2n∑
k=0

(−1)k
(

2n

k

)3

= (−1)n
(

3n

n, n, n

)

Proof. Let A =

 0 1 −1
−1 0 1
1 −1 0

. Then

G(2n, 2n, 2n) = [x2n
1 x2n

2 x2n
3 ](x2 − x3)2n(x1 − x2)2n(x3 − x1)2n =

2n∑
k=0

(−1)3k

(
2n

k

)
.
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MacMahon master theorem says that G(2n, 2n, 2n) is also equal to

G(2n, 2n, 2n) = [t2n1 t2n2 t2n3 ]
1

det(I − TA)
,

where I − TA =

 1 −t1 t1
t2 1 −t2
−t3 t3 1

, and det(I − TA) = 1 + t1t2 + t1t3 + t2t3. Thus

G(2n, 2n, 2n) = [t2n1 t2n2 t2n3 ]
1

1 + (t1t2 + t1t3 + t2t3)

= [t2n1 t2n2 t2n3 ]
∞∑
r=0

(−1)r + (t1t2 + t1t3 + t2t3)r

= (−1)3n[t2n1 t2n2 t2n3 ](t1t2 + t1t3 + t2t3)3n = (−1)n
(

3n

n, n, n

)
.

Proof MacMahon master theorem by Konvanlinka-Pak. Let A = (aij) where aij is in a ring and A
is a Cartier-Foata matrix. Instead of proving the identity for complex numbers, we prove it for
words. That is the MacMahon Master Theorem is equivalent to the following statement.∑

(k1,k2,...,kn)

G(k1, k2, . . . , kn) =
1

detCF (I −A)
.

G(k1, k2, . . . , kn) is a generating function of words (we can recover the ti from the words). But

1

detCF (I −A)
= |I −A|−1

11 |I −A11|−1
22 · · ·

=

(
1

I −A

)
11

(
1

I −A11

)
22

· · ·

= (I +A+A2 + · · · )11(I −A11 − (A11)2 + · · · ) · · ·

In terms of words this is words that start and end in level i, but do not go below level i.

1 1
2 2

3 3

The meaning of G(k1, k2, . . . , kn) we have paths where there are ki steps leaving i and ki steps
going to i. The words in the LHS and RHS are the same.

1
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14 Lecture 13: Heaps of pieces

The invetor of this theory was Xavier Viennot.

14.1 The Cartier-Foata monoid

Given a poset P = {[n],�} whose elements are x1, x2, . . . , xn. We look at words X under an
equivalence ∼: xixj = xjxi if i 6� j and j 6� i i.e. if i and j are incomparable.

Let FP =
∑

w∈X∗/∼w, which is a noncommutative generating series.
Then α : X → R where R = Z[[q]] and where α(xi1xi2 · · · ) = α(xi1)α(xi2) · · · and α(F ) =∑
w∈X∗/∼ α(w) and α : xi → q. So α(FP ) =

∑
w∈X∗/∼ q

|w|.

14.2 Example Heaps of Pieces

Example 14.1. Let G = (V,E) be a finite graph. Pieces will be subgraphs of G. The poset P will
be a finite collection of pieces. We say that P1P2 = P2P1 if V (P1)∩ V (P2) = ∅. We are interested
in the words P1P3P4P1P1 up to commutativity.

Example 14.2. Let G be the path with n vertices and the pieces Pi the edge from i to i + 1.
FH =

∑
H∈HH.

The following is an example with 11 pieces for n = 8.

Gn

Theorem 14.3. FH =
∑

H∈HH where H stands for words in P the set of pieces. Then FH =

(
∑

H∈D(−1)|H|H)−1 where D ⊂ H is the set of simple pieces D which consist of commuting pieces.

Example 14.4. In the previous example D consists of graphs of disjoint edges in from the path.

So Fn(q) =
∑

H∈H q
|H| =

(∑
H∈D(−q)|H|

)−1
. Note that A1(q) = 1, A2(q) = 1− q, A3(q) = 1− 2q,

A4(q) = 1 − 3q + q2, . . .An+1(q) = An(q) + (−q)An−1(q). These are Chebyshev polynomials of
the second kind, a family of Orthogonal polynomials. Thus Fn(q) is 1/An(q). The case n = 2 gives
1 + x+ x2 + · · · = 1/(1− x).

Theorem 14.3. We show with an involution that (
∑

H∈HH)(
∑

D∈DD(−1)|D| = 1.
We do a linear order on P and always try to remove the smallest possible pieces in H and

D.

Open 14.5. Find deterministic polynomial time algorithm to generate a matrix in Un(p) at distance
n1+ε from the identity.

15 Lecture 14: Application heaps of pieces

Let U(n, p) be the set of strict n × n upper triangular matrices with entries in Fp. Let S =

{Ek(a)} where (Ek(a))ij =


1 if i = j 6= k

a if i = k, j = k + 1

0 otherwise

. These matrices Ei(a) are called elementary

transvections.
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Question 15.1. What is the diameter of Γ(U(n, p), S)?

Recall that the given a finitely generated group G, and S ⊆ G where S = S−1 and < S >= G.
The Cayley graph Γ(G,S) is the graph with vertices g ∈ G and edges (g, gs) and (gs, g) where
g ∈ G and s ∈ S.

Proposition 15.2. In all situations Γ(G,S) > blog|S| |G|c − 1

Proof. Distance 0 we have one element (the identity), distance 1 we have |S| elements, . . . , distance
k we have |S|k elements. If |S|k > |G| then k < diam Γ. Then using sums of geometric series

|G| < 1 +m+m2 + · · ·+mk = mk+1

m−1 < mk+1 so k + 1 > logm|G|.

Corollary 15.3. d(n, p) ≥ log(n−1)(p−1) p
(n2).

Proof.

=
log p(

n
2)

log(n) + log(p)
=

(
n
2

)
(log p)

log(n) + log(p)
.

If p is fixed and n→∞ then we get d(n, p) > C(p) n2

logn .

Theorem 15.4 (Ellenberg). For p fixed then d(n, p) = Θ(n2).

Lemma 15.5. d(n, p) = O(n2).

Example 15.6. Given the first row it takes O(n) to clear the first row. This is because if we look
at a12 = 1 then we can take the next row. Let tn be the number of steps to get any first row from
any matrix. Then tn = tn−1 + 1.

Remark 15.7. If we look at this problem over the reals then the lower bound is also quadratic
(by the dimension of upper triangular matrices). The hard part is to show the lower bound when
p is small, like 2.

Lemma 15.8. d(n, p) = Ω(n2).

Proof. If we show that
∑

w∈S∗,`(w)≤` # distinct words < |G| then diam > `. These are heaps of
intervals (i, i+ 1). So ∑

w∈S∗,`(w)≤`

# distinct words <
∑

H,|H|≤`

(p− 1)|H| < |G|

But we know that ∑
(p− 1)|H| =

1

An−1(p− 1)
,

where An(x) are the Chebyshev polynomials of the second kind. In general

An(x) =
1

2n+2y

(
(1 + y)n+2 − (1− y)n+2

)
,

where y =
√

1− 4x. If x < 1/4 then An(x) has no roots. So using a bit of calculus shows that for
all p ∑

(p− 1)|H| =
1

An−1(p− 1)
≤ (4(p− 1))`.

Therefore d(n, p) ≥ log4p p
(n2) = C · n2.
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16 Lecture 15:

We had success estimating the diameter of U(n, q). What if we try other groups. One bad example
is the symmetric group. diam(Sn, {(i, i+ 1) | i = 1, . . . , n}

Proposition 16.1. diam > logn+1 n! = log en log n

logn ∼ n.

The theorem implies in this case that the diameter cn log n. But a combintorial argument gives
that distT (1, σ) = inv(σ) so diam =

(
n
2

)
= Θ(n2).

To use heaps of pieces the Cayley graph has to be special.
Today we will see another application of heaps of pieces to count polyominoes or animals. A

polyominoe is a dual of the connected induced subgraph of Z2.

Conjecture 16.2. If a(n) is the number of polyominoes of area n then a(n) ∼ Cnαλn some λ > 1.

The number of such polyominoes is in the sequence [?, A000105].

16.1 Parallelogram polyominoes

Exercise 16.3. Let pp(n, k) be the number of parallelogram polyominoes with dimensions n and k.
This number is 1

n+k

(
n+k
k

)(
n+k
k+1

)
, the Narayana numbers. Note that

∑
n+k=m p(n, k) = Cm, the mth

Catalan number.

m

k Ph(p)

`(p)

Given a parallologram polyominoe P , let h(P ) be the height of P , (
¯
P ) the width of P , and

a(P ) the area of P .
Let F (x, y, q) =

∑
P x

b(P )yh(P )qa(P ) then

Theorem 16.4. F (x, y, q) = yA(x, y, q)/B(x, y, q).

16.1.1 Plan of proof

1. we will relate parallelogram polyominoes ot heaps, 2. generalize the main theorem of heaps
to accommodate for restricting to heaps that have restricted maxima, 3. complete the proof of
Theorem 16.4.

22



Theorem 16.5. Let M⊆ P then

∑
H∈H,max(H)⊆M

H =

(∑
H∈D

(−1)|H|H

)−1

(
∑

H∈DP\M

(−1)|H|H).

The proof of this generlization is very similar to the proof of Theorem 14.3.
Given a parallelogram polyominoe

1 2 3 4

1
2

3
4
5

6
7
8

ϕ

We record the column heights (3, 4, 3, 4, 4, 2, 2, 2) and intersection lengths (a1, a2, . . . , an) where
a1 = 1 is (1, 3, 3, 3, 3, 1, 2, 2, 1)

The heaps are intervals [an, cn] ◦ [an−1, cn−1] ◦ · · · ◦ [a1, c1]. The pieces are [i, j] for i ≤ j.

Example 16.6. In s1 = [1, 3], s2 = [3, 4], s3 = [3, 3], s4 = [3, 4], s5 = [3, 4], s6 = [1, 2], s7 =
[2, 2], s8 = [2, 2].

Lemma 16.7. There is a correspondence between parallelogram polyominoes and heaps such that
b(p) goes to H(P ) and h(P ) goes to the sum of the lengths and a(P ) becomes the sum of cis.

17 Lecture 16

F (x, y, q) =
∑

p x
b(P )yh(P )qa(P ), where b(P ) is the width of the heap, h(P ) is the height of the

heap, a(P ) is the area of P .

Theorem 17.1.

F (x, y, q) =
q
∑∞

n=0(−1)nxn+1q(
n+2

3 )/(q, q)n(yq, q)n+1∑∞
n=0(−1)nxn/(q, q)n(yq, q)n

,

where (α, q)n = (1− α)(1− αq) · · · (1− αqn−1)

As a corollary we get

Corollary 17.2 (Bousquet-Mélou and Viennot).

F (x, y, q) =
xyq

1− q(x+ y)− xyq3

1−q3(x+y)− xyq5

1−q5(x+y)−xyq7

.

Lemma 17.3. The parallelogram polyominoes (PP) are in bijection with heaps on P = {[ai, ci]}
where ai are the column intersections and ci are the column lengths.

We give an example of the reverse bijection.
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1 2 3 4 5

1

2

3

4

5

6

7

8

9
ϕ

ϕ−1

Lemma 17.4. ∑
H∈RΩ,max(H)⊆M

H = (
∑
H∈DΓ

(−1)|H|H)(
∑

H∈DΓ\M

(−1)|H|H).

Let DPn = n.

Lemma 17.5. DPn are in bijection with pars of partitions winto parts ≤ n which add up to a(P ).

Proof. 1m12m23m3 · · · → λ and 1k12k23k3 · · · → µ where m1 = αn−1 + 1 and k1 = βn−i+1.

Next note that
1

(1− q)
1

(1− q2)
· · · 1

(1− qn)
=

∑
λ:λ1≤n

q|λ|.

and
1

(1− yq)
1

(1− yq2)
· · · 1

(1− yqn)
=

∑
λ:λ1≤n

yb(λ)q|λ|.

Consider the tridiagonal matrix

A =


α1 1
−1 α2 1 0

−1 α3 1
...

...
−1 αn



then |A|11 = 1
α1

+ 1
α2

+ 1
α3

+
...
αn

.

If we want to compute A−1, let B be such that A = I −B then

I +B +B2 +B3 + · · ·

18 Lecture 17: Heaps and cycles and more

Definition 18.1. G = (V,E) be an undirected graph. PG is the set of pieces {(v, e) | e =
−−−→
(v, v′)}

where (v, e) and (v, e′) are comparable.
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HP = HG is the set of heaps H.

Definition 18.2. We say that H is balanced if for all v the #(v, e) ∈ H equals the number of

(w,
−−−→
(w, v)) in H

Theorem 18.3. ∑
H∈HG, balanced

H =
∑
K∈CG

K,

where CG is the set of heaps of (simple) cycles in G.

This result is useful since the RHS allows us to get rid of the balanced condition.
By Theorem 14.3 we have that

∑
K∈CG

K =

 ∑
K simple heaps of simple cycles

(−1)KK)−1 1∑
det(I −MG)(−1)|K|

 ,

where MG = (mij) is the adjacency matrix of G (note that mij = 1 iff there is an edge
−−−→
(vi, e) where

e = (vi, vj).
By the MacMahon Master Theorem (Theorem 13.5) we get that

18.1 Pyramid

Theorem 18.4.

∑
paths P :v→w

P =
∑
L∈HG

r self-avoiding walks v → w

Proof. We traverse the path and as we encounter loops we separate them from the path and
continue. The resulting configuration is a self avoiding walk and a heap of cycles.

L′
1

L′
2

A3 A1

A2

P ′
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18.2 Wilson’s algorithm

We start with a graph G

1. Run LERW from vertex 1 to the vertex R.

2. Pick the minimal unvisited vertex x to path P1.

3. This stops with a spanning tree.

Theorem 18.5 (D. Wilson 1997). This produces a uniform random spanning tree.

Proof. The first step is to give an analogue algorithm to produce a uniform random tree. The
algorithm is as follows. For each vertex not in R create a pice uniformly.∑

words = (
∑
T

T ) = (
∑

H heaps of cycles

H).

Acknowledgements: Stephen DeSalvo for providing notes and clarifications.

19 Lecture 18: The BEST theorem

The name of the theorem comes from De Bruijn, Aurdenne-Ehrenfest, Smith and Tutte.

Definition 19.1 (deBruijn sequence). B(n) a sequence that contains every 0-1 word of length n
cyclically exactly once.

For example, for n = 3, 00010111.

Proposition 19.2. Let B(n) be the number of deBruijn sequence of cyclic length 2n. Then B(n) ≥
1.

Theorem 19.3. B(n) = 22n−1−n

For some history of the problem, de Riviere introduced the problem in 1864 and conjectured
a formula and Saite-Marie proved the theorem. This was forgotten and Posthumus conjectured it
again in 1944 and de Bruijn proved it in 1946.

Proof. We build a directed graph B(n) with vertices V = {0, 1}n−1 and arcs (x1, x2, . . . , xn−1) →

(x2, x3, . . . , xn). Then Eulerian circuits in B(n) corresponds to deBruijn n-sequences.

01 10

00

11

01 10

00

11

00111010

By the following theorem, we know that B(n) has an Eulerian tour.

Theorem 19.4 (Euler, August 26, 1735). A connected directed graph G has an Eulerian cycle if
and only if indeg(v) = outdeg(v) for all vertices v in V (G).
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For B(n) we have that outdeg(v) = 2, so B(n) has an Eulerian cycle. By the next result that
was proved 200 years later allows us to compute the number of Eulerian cycles of a graph.

Theorem 19.5 (BEST). Fix v0 in V then the number E(G) of Eulerian cycles of a directed graph
G is

E(G) = #directed trees rooted at v0

∏
v∈V

(outdeg(v)− 1)!.

Proof.
∏
v∈V,v 6=v0

outdeg(v)!(outdeg(v0) − 1)! are the possible orderings of the outdegrees. If for
each vertex v ∈ V v 6= v0 we record the last outgoing edge from v, these set of edges form a
directed tree oriented towards v0. So∏

v∈V
(outdeg(v)− 1)! ·#directed trees rooted at v0

counts Eulerian circuits.

Remark 19.6. Up until the year 2000 we did not know the number of Eulerian cycles in K2n−1

and K2n,2n. In this case the BEST theorem does not apply because the graphs are not directed.

20 Lecture

21 Lecture

22 Lecture

Theorem 22.1. The following are equivalent:

1. polynomino tilings

2. Wang tilings

3. walks in graphs

4. F N-rational functions.

Theorem 22.2 (Berstel-Soittola). If F (t) = P (t)
Q(t) then F ∈ F if and only if

0. F ∈ N[[t]]

1. If ρ := minz pole of F |z| then ρ is a pole.

2. If |z| = ρ pole of F then zk = ρk.

Theorem 22.3 (Berstel). Suppose F (t) =
∑∞

n=0 ant
n, an > 0 and F (t) is R+-rational, i.e. in R

then

0. α, t ∈ R, α ≥ 0

1. F, b ∈ R then F + b, F · b ∈ R,

2. [1]F = 0 for F ∈ R and 1
1−F is in R.
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Definition 22.4. LetR be the minimal class of generating functions satisfying the three conditions
above.

Theorem 22.5 (Berstel). Suppose F (t) =
∑∞

n=0 ant
n with an > 0 and F (t) is R+-rational (in R)

then we have conditions 1. and condition 2. from Berstel-Soittola’s theorem.

As a corollary of Theorems 22.3 and 22.5,

Corollary 22.6. For F ∈ R ∩ N[[t]]

Lemma 22.7. F =
∑∞

n=0 gnt
n then F = P (t)/Q(t), ρ = minz∈ΠF

|z| where ΠF is the set of poles
of F then ρ ∈ ΠF .

Proof. Let z ∈ C and |z| < ρ then

|F (z)| = |
∑
n

anz
n| ≤

∑
n

an|z|n = F (|z|).

Take z0 ∈ ΠF with |z0| = ρ with multiplicity m then H(z) = (z0− z)mF (z) where H(z) is analytic
and H(z0) 6= 0. If ρ is a pole with multiplicity ,m then G(z) = (ρ − z)mF (z), G(ρ) = 0 and
limr→1,r<1(
rho− ρr)mF (ρ · r) = 0.

If z = rz0 then limr→1,r<1 z
m
0 (1− r)mF (rz0) > 0. So limr→1,r<1 ρ

m(1− r)mF (rρ) > 0. This is
a contradiction to the previous equality.

Lemma 22.8. F =
∑
ant

n, G =
∑
bnt

n and ρF , ρG are as above then ρF+G = min{ρF , ρG} and
ρF ·G = min{ρF , ρG}.

Theorem 22.5. We need to check that condition 2 in Berstel-Soittola holds under the operation
1/(1− F ).

Example 22.9.

F (t) =
1

1− (3t)n
− 1

1− (2t)n

By Theorem 22.2 then F (t) ∈ F .

23 Lecture

We continue proving Berstel’s theorem.

Theorem 23.1 (Berstel). Let F (t) =
∑∞

n=0 ant
n, an ≥ 0. Suppose F (t) is R+-rational. Let

ρF = minρ∈ΠF
|ρ| where ΠF is the set of the poles of F . (1) Then ρF is also a pole of F and (2)

every pole ρ of F such that |ρ| = |ρF | satisfies ρk = ρkF for some k.

Proof. We have checked (1). For (2) we have checked that F,G ∈ R then F + G,F · G ∈ R. If
[1]F = 0 then 1/(1− F ) ∈ R and ρF+G = min(ρF , ρG).

The poles of F ∗ = 1/(1− F ) are the zeroes of 1− F . F (ρF ) =
∑∞

n=0 anσ
n
F =∞ by definition.

Now F (r), by definition F (0) = 0, and F (r) for r ∈ [0, ρF ) is increasing and limr→ρF F (r) =∞
Then there exists r, 0 < r < ρF such that F (r) = 1. Then r is a pole of F ∗. Let z be a pole of

F ∗, |z| ≤ r.
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1

r

F (r)

Claim: (z/r)k = 1 for some k.
This is because 1 =

∑∞
n=0 anz

n = Re(
∑∞

n=0 anz
n) =

∑∞
n=0 anRe(z

n) ≤ ∑∞
n=0 an|z|n ≤∑∞

n=0 anr
n = F (r) = 1. So F (z) = F (r) and therefore, anRe(z

n) = anr
n for all n. Since F (t) 6= 0

then ak 6= 0 for some k. Thus Re(zk) = rk. This proves (2).

23.1 Irrational Tilings

Let T be a set of irrational tiles of height 1. an(T ) be the number of ways to tile the strip 1 × n
with the tiles from T . We are interested in studying the generating function

∑∞
n=0 ant

n.

Example 23.2. 1. If the tiles are the two tiles in the right of the figure we get an(T ) = Fn.

2. If the tiles are the two tiles on the right of the figure where ε is irrational we get an(T ) =
(

2n
n

)
but

∑∞
n=0

(
2n
n

)
xn = 1/

√
1− 4t.

1 1

1
2 + ε 1

2 − ε

Theorem 23.3 (Garrabrant-Pak). For all T irrational tiles A(t) =
∑∞

n=0 an(T )tn then A(t) =
DiagF (x1, x2, . . . , xk), i.e. an = [xn1x

n
2 · · ·xnk ]F where F is a N-rational function of k variables.

Definition 23.4. The class Fk of N-rational functions in k variables is the class satisfying:

0. 0, x1, . . . , xk ∈ Fk,

1. F,G ∈ Fk then F +G ∈ Fk,

2. If [1]F = 0 then 1
1−F ∈ Fk

23.2 Asymptotics of classes of generating functions

1. (Rational) F (t) = P (t)/Q(t) for some P,Q ∈ Z[t], an = c1an−1 + c2an−2 + · · ·+ cran−r.

We use the following asymptotic notation an
∝C · nα · λn where C ∈ A, α ∈ Z, λ ∈ A. This

means that an is asymptotically a finite sum of multiples of such powers.

Example 23.5. Let an = 2n + (−2)n, then an
∝2n.

2. (N-rational) Let F ∈ F be N-rational. There exists m such that cn ∼ Cjn
λjλnj for n = j

(mod m).
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3. (Algebraic) p0(t)F k + p1(t)F k−1 + · · ·+ pk(t) = 0 where pi(t) are polynomials.

Example 23.6. If an =
(

2n
2n

)
then A(t) =

∑∞
n=0 = 1/

√
1− 4t. This is algebraic.

If F = 1 + tF 2, then F (t) =
∑∞

n=0Cnt
n where Cn = 1

n+1

(
2n
n

)
are the Catalan numbers.

Theorem 23.7. an
∝Cnαλner(n)(n!)σ(logn)γ

4. (D-finite) c0(n)an = c1(n)an−1 + c2(n)an−2 + · · ·+ cr(n)an−r, where ci(n) are polynomials in
n over Z.

Claim: Theorem 23.7 for algebraic functions works for D-finite.

Example 23.8. Let an = 1
n! , then A(t) = et which is not algebraic but A(t) is D-finite.

Example 23.9. Let an be the number of permutations of n that are involutions. Then
an = an−1 +(n−1)an−2. The exponential generating function of an is

∑∞
n=0

an
t
n/n! = et−t

2/2.
This is not algebraic but it is D-finite.

Clearly 1 ⊃ 2 (proper) and 1 ⊂ 3subset4 both proper.

Theorem 23.10. Suppose F = DiagP (x1, x2, . . . , xn)/Q(x1, x2, . . . , xn) then F is D-finite.

Moreover

Theorem 23.11. If F = DiagP/Q where P,Q is D-finite then F is D-finite.

Now the class 5. of generating series of irrational tilings are contained in 4.

Theorem 23.12 (Fustenberg). Every F algebraic is F = DiagP (x, y)/Q(x, y) and DiagP (x, y)/Q(x, y)
is algebraic.

Example 23.13. Cn = [xnyn](1 − x/y)/(1 − x − y) since [xnyn]1/(1 − x − y) =
(

2n
n

)
and

[xn+1yn−1]1/(1 − x − y) =
(

2n
n−1

)
and Cn =

(
2n
n

)
−
(

2n
n−1

)
. Also Rowland and Yassawi showed

that

Cn = [xnyn]
y(1− 2xy − 2xy@)

1− x− 2xy − xy2
.

So Fustenberg’s theorem does not necessarily give a unique expression as diagonals.
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